Agents
Intro
The Birth of An Agent: Construction of LLM-based Agents

AI Agents Architecture
Paper: AI Agents: Evolution, Architecture, and Real-World Applications

AI Agent 擬人化角色與分工

Automation
ADAS
Paper: Automated Design of Agentic Systems
Code: https://github.com/ShengranHu/ADAS

Gödel Agent
Paper: Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement
Code: https://github.com/Arvid-pku/Godel_Agent

Voyager
Paper: Voyager: An Open-Ended Embodied Agent with Large Language Models
Code: https://github.com/MineDojo/Voyager

NPCpy
Code: https://github.com/NPC-Worldwide/npcpy
from npcpy.npc_compiler import NPC
simon = NPC(
name='Simon Bolivar',
primary_directive='Liberate South America from the Spanish Royalists.',
model='gemma3:4b',
provider='ollama'
)
response = simon.get_llm_response("What is the most important territory to retain in the Andes mountains?")
print(response['response'])
Frameworks
OpenAI Agent SDK
Code: https://github.com/openai/openai-agents-python
pip install openai-agents
AG2: Open-Source AgentOS for AI Agents
Build with AG2
Kaggle :
- AG2 Agent coding
- AG2 Agent Tools and Run Method examples
- AG2 Conversable Agent
- AG2 Group Chat
- AG2 Groupchat with RAG
AgentGym
Paper: AgentGym: Evolving Large Language Model-based Agents across Diverse Environments
Code: https://github.com/WooooDyy/AgentGym

AgentGym-RL
Paper: AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning
Code: https://github.com/WooooDyy/AgentGym-RL
Modular System Design of AgentGym-RL

Post-Training Strategies
AgentGym-RL supports a suite of mainstream online RL algorithms: PPO, GRPO, RLOO, REINFORCE++.
Beyond online RL, AgentGym-RL also supports a broad range of complementary training paradigms: SFT, DPO, AgentEvol.
ScalingInter-RL: Progressive Scaling Interaction for Agent RL

AgentScope
Paper: AgentScope 1.0: A Developer-Centric Framework for Building Agentic Applications
Github: https://github.com/agentscope-ai/agentscope

Memento
Paper: Memento: Fine-tuning LLM Agents without Fine-tuning LLMs
Code: https://github.com/Agent-on-the-Fly/Memento
Methodology: Memory-Based MDP with Case-based Reasoning Policy

Alpha Evolve
Blog: AlphaEvolve:Google DeepMind 開創 AI 演算法自主進化新紀元
Paper: AlphaEvolve: A coding agent for scientific and algorithmic discovery
OpenEvolve
Code: https://github.com/algorithmicsuperintelligence/openevolve
Turn your LLMs into autonomous code optimizers that discover breakthrough algorithms

ShinkaEvolve
Paper: ShinkaEvolve: Towards Open-Ended And Sample-Efficient Program Evolution
Code: https://github.com/SakanaAI/ShinkaEvolve

AlphaResearch
Paper: AlphaResearch: Accelerating New Algorithm Discovery with Language Models
Code: https://github.com/alpharesearchbot/Alpha
GSW (Generative Semantic Workspaces)
Paper: Beyond Fact Retrieval: Episodic Memory for RAG with Generative Semantic Workspaces

Fara-7B
Paper: Fara-7B: An Efficient Agentic Model for Computer Use
Code: https://github.com/microsoft/fara

Google ADK
Blog: Building AI Agents Visually with Google ADK Visual Agent Builder
Research the latest developments in quantum computing error correction in 2024.

Google Antigravity
Blog: Google Antigravity
「反重力」系統 它內部有好幾個AI代理(Agent),就像一個項目團隊:
- 「規劃師」代理:負責把你的模糊目標,拆解成具體的、可執行的步驟。
- 「研究員」代理:負責上網查找最新的天氣API接口是什麼,最好的UI設計長什麼樣。
- 「構建師」代理:負責根據規劃和研究,吭哧吭哧地寫代碼。
- 「測試員」代理:負責檢查代碼有沒有bug。
- 「反思者」代理:負責評估整個過程,看看哪裡可以改進。
MCP - Model Context Protocol
MCP (Model Context Protocol) is an open-source standard for connecting AI applications to external systems.
Blog: Standardizing AI Tooling with Model Context Protocol (MCP)

MCP Servers
Current reference servers
- Everything - Reference / test server with prompts, resources, and tools
- Fetch - Web content fetching and conversion for efficient LLM usage
- Filesystem - Secure file operations with configurable access controls
- Git - Tools to read, search, and manipulate Git repositories
- Memory - Knowledge graph-based persistent memory system
- Sequential Thinking - Dynamic and reflective problem-solving through thought sequences
- Time - Time and timezone conversion capabilities
MCP SDK
MCP Inspector
npx -y @modelcontextprotocol/inspector npx <package-name> <args>
# For example
npx -y @modelcontextprotocol/inspector npx @modelcontextprotocol/server-filesystem /Users/username/Desktop
A2A - Agent2Agent Protocol
An open protocol enabling communication and interoperability between opaque agentic applications.

Github” https://github.com/a2aproject/A2A
A2A-SDK
Agent Skills
The Skills architecture

my-skill/
├── SKILL.md # Required: instructions + metadata
├── scripts/ # Optional: executable code
├── references/ # Optional: documentation
└── assets/ # Optional: templates, resources
Github: https://github.com/anthropics/skills
Agent Coding Tool
Claude Code
- Install Claude Code
curl -fsSL https://claude.ai/install.sh | bash
OpenCode

# YOLO
curl -fsSL https://opencode.ai/install | bash
# Package managers
npm i -g opencode-ai@latest # or bun/pnpm/yarn
Skills
Antropics skills
NotebookLM-skill
Install:
mkdir -p ~/.claude/skills
cd ~/.claude/skills
git clone https://github.com/PleasePrompto/notebooklm-skill notebooklm
Run agentic coding tool:
claude or opencode
Inputs:
What are my skills?
Set up NotebookLM authentication
Add this NotebookLM to my library : https://notebooklm.google.com/notebook/c2e2c6de-0131-420e-8686-2326bc9a438a
What is Agent Skills ?
UIUX-Pro-Max-skill
Install:
npm install -g uipro-cli
uipro init --ai claude # Claude Code
uipro init --ai gemini # Gemini
uipro init --ai trae # Trae
uipro init --ai opencode # OpenCode
Go to project:
cd ~/GenAI/Skills/notebooklm
Run agentic coding tool:
claude or opencode
Inputs:
Build a landing page for my SaaS product
OpenClaw
OpenClaw Architecture

Blog: OpenClaw (Clawdbot) Architecture: Engineering Reliable and Controllable AI Agents
The 6-Stage Execution Pipeline:
- Channel Adapter: Standardizes inputs from different platforms (e.g., Discord or Telegram) into a unified message format while extracting necessary attachments.
- Gateway Server: Acts as a session coordinator, determining which session a message belongs to and assigning it to the appropriate queue.
- Lane Queue: A critical reliability layer that enforces serial execution by default, allowing parallelism only for explicitly marked low-risk tasks.
- Agent Runner: The “assembly line” for the model. It handles model selection, API key cooling, prompt assembly, and context window management.
- Agentic Loop: The iterative cycle where the model proposes a tool call, the system executes it, the result is backfilled, and the loop continues until a resolution is reached or limits are hit.
- Response Path: Streams final content back to the user channel while simultaneously writing the entire process to a JSONL transcript for auditing and replay.
OpenClaw Installation
setup VPN : Tailscale
curl -fsSL <https://tailscale.com/install.sh> | sh
sudo tailscale up
setup Firewall
sudo apt install ufw -y
sudo ufw default deny incoming
sudo ufw default allow outgoing
sudo ufw allow in on tailscale0 to any port 22
sudo ufw enable #Type 『y』 to confirm`
sudo ufw status
install OpenClaw
npm install -g openclaw@latestopenclaw onboard --install-daemonopenclaw gateway restart- open browser
http://127.0.0.1:18789
Multiple Agents
This site was last updated February 04, 2026.