Agents
Agents
Intro
Inner Monologue
以大型語言模型打造的AI Agent
LLM Agent Paper List

The Birth of An Agent: Construction of LLM-based Agents

AI Agents: Evolution, Architecture, and Real-World Applications


ADAS
Paper: Automated Design of Agentic Systems
Code: https://github.com/ShengranHu/ADAS

Gödel Agent
Paper: Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement
Code: https://github.com/Arvid-pku/Godel_Agent

Voyager
Paper: Voyager: An Open-Ended Embodied Agent with Large Language Models
Code: https://github.com/MineDojo/Voyager

NPCpy
Code: https://github.com/NPC-Worldwide/npcpy
from npcpy.npc_compiler import NPC
simon = NPC(
name='Simon Bolivar',
primary_directive='Liberate South America from the Spanish Royalists.',
model='gemma3:4b',
provider='ollama'
)
response = simon.get_llm_response("What is the most important territory to retain in the Andes mountains?")
print(response['response'])
Frameworks
OpenAI Agent SDK
Code: https://github.com/openai/openai-agents-python
pip install openai-agents
LangChain
- Build a RAG agent with LangChain
- Build a SQL agent with LangChain
- Build a custom RAG agent with LangGraph
- Build a custom SQL agent with LangGraph
Kaggle:
HuggingFace smolagents

Examples:
Kaggle:
DSPy
DSPy: Programming—not prompting—Foundation Models
Kaggle:
Blog: Building and Optimizing AI Applications with DSPy and Gemini Flash 2.5
AG2
Kaggle:
- AG2 Agent coding
- AG2 Agent Tools and Run Method examples
- AG2 Conversable Agent
- AG2 Group Chat
- AG2 Groupchat with RAG
AutoGen

MCP (Model Context Protocol)
MCP (Model Context Protocol) is an open-source standard for connecting AI applications to external systems.

MCP SDK
AgentGym
Paper: AgentGym: Evolving Large Language Model-based Agents across Diverse Environments
Code: https://github.com/WooooDyy/AgentGym

DGM
Paper: Darwin Gödel Machine: Open-Ended Evolution of Self-Improving Agents
Code: https://github.com/jennyzzt/dgm

AgentGym-RL
Paper: AgentGym-RL: Training LLM Agents for Long-Horizon Decision Making through Multi-Turn Reinforcement Learning
Code: https://github.com/WooooDyy/AgentGym-RL
Modular System Design of AgentGym-RL

Post-Training Strategies
AgentGym-RL supports a suite of mainstream online RL algorithms: PPO, GRPO, RLOO, REINFORCE++.
Beyond online RL, AgentGym-RL also supports a broad range of complementary training paradigms: SFT, DPO, AgentEvol.
ScalingInter-RL: Progressive Scaling Interaction for Agent RL

AgentScope
Paper: AgentScope 1.0: A Developer-Centric Framework for Building Agentic Applications
Github: https://github.com/agentscope-ai/agentscope

Memento
Paper: Memento: Fine-tuning LLM Agents without Fine-tuning LLMs
Code: https://github.com/Agent-on-the-Fly/Memento
Methodology: Memory-Based MDP with Case-based Reasoning Policy

Alpha Evolve
Blog: AlphaEvolve:Google DeepMind 開創 AI 演算法自主進化新紀元
Paper: AlphaEvolve: A coding agent for scientific and algorithmic discovery
OpenEvolve
Code: https://github.com/algorithmicsuperintelligence/openevolve
Turn your LLMs into autonomous code optimizers that discover breakthrough algorithms

ShinkaEvolve
Paper: ShinkaEvolve: Towards Open-Ended And Sample-Efficient Program Evolution
Code: https://github.com/SakanaAI/ShinkaEvolve

AlphaResearch
Paper: AlphaResearch: Accelerating New Algorithm Discovery with Language Models
Code: https://github.com/alpharesearchbot/Alpha
GSW (Generative Semantic Workspaces)
Paper: Beyond Fact Retrieval: Episodic Memory for RAG with Generative Semantic Workspaces

Fara-7B
Paper: Fara-7B: An Efficient Agentic Model for Computer Use
Code: https://github.com/microsoft/fara

Google ADK
Blog: Building AI Agents Visually with Google ADK Visual Agent Builder
Research the latest developments in quantum computing error correction in 2024.

Google Antigravity
Blog: Google Antigravity
「反重力」系統 它內部有好幾個AI代理(Agent),就像一個項目團隊:
- 「規劃師」代理:負責把你的模糊目標,拆解成具體的、可執行的步驟。
- 「研究員」代理:負責上網查找最新的天氣API接口是什麼,最好的UI設計長什麼樣。
- 「構建師」代理:負責根據規劃和研究,吭哧吭哧地寫代碼。
- 「測試員」代理:負責檢查代碼有沒有bug。
- 「反思者」代理:負責評估整個過程,看看哪裡可以改進。
This site was last updated December 09, 2025.