BioLLM

BioLLM

SAE (Sparse Autoencoder)

Lecture: CS294A Lecture notes by Andrew Ng

SAE survey

Paper: A Survey on Sparse Autoencoders: Interpreting the Internal Mechanisms of Large Language Models


Transcoder

Paper: Transcoders Find Interpretable LLM Feature Circuits
Code: Transcoder-circuits: reverse-engineering LLM circuits with transcoders


Sparse Crosscoders

Paper: Sparse Crosscoders for Cross-Layer Features and Model Diffing


Evo2

Paper: Genome modeling and design across all domains of life with Evo 2
Code: https://github.com/ArcInstitute/evo2
Evo 2: Genome modeling and design across all domains of life


CellVerse

Paper: CellVerse: Do Large Language Models Really Understand Cell Biology?


C2S (cell2sentence)

Paper: Scaling Large Language Models for Next-Generation Single-Cell Analysis
model: C2S-Scale-Gemma-2-2B, [C2S-Scale-Gemma-2-27B)(https://huggingface.co/vandijklab/C2S-Scale-Gemma-2-27B)
Code: https://github.com/vandijklab/cell2sentence


Training Transcoder on C2S

Paper: Transcoder-based Circuit Analysis for Interpretable Single-Cell Foundation Models
model: vandijklab/C2S-Pythia-410m-cell-type-prediction


Training

SmolLM2

Paper: SmolLM2: When Smol Goes Big — Data-Centric Training of a Small Language Model
Model: SmolLM2
State-of-the-art compact LLMs for on-device applications: 1.7B, 360M, 135M
Dataset: EleutherAI/SmolLM2-135M-10B


sparify

Dataset :
Code: https://github.com/EleutherAI/sparsify

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B")
inputs = tokenizer("Hello, world!", return_tensors="pt")

with torch.inference_mode():
    model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B")
    outputs = model(**inputs, output_hidden_states=True)

    latent_acts = []
    for sae, hidden_state in zip(saes.values(), outputs.hidden_states):
        # (N, D) input shape expected
        hidden_state = hidden_state.flatten(0, 1)
        latent_acts.append(sae.encode(hidden_state))

# Do stuff with the latent activations



This site was last updated October 26, 2025.