Object Detection

Datasets

COCO Dataset

  • Object segmentation
  • Recognition in context
  • Superpixel stuff segmentation
  • 330K images (>200K labeled)
  • 1.5 million object instances
  • 80 object categories
  • 91 stuff categories
  • 5 captions per image
  • 250,000 people with keypoints


Open Images Dataset

Open Images is a dataset of ~9M images annotated with image-level labels, object bounding boxes, object segmentation masks, visual relationships, and localized narratives:

  • 16M bounding boxes for 600 object classes on 1.9M images
  • 3.3M annotations from 1,466 distinct relationship triplets
  • 66.4M point-level labels over 1.4M images, covering 5,827 classes
  • annotated with 61.4M image-level labels spanning 20,638 classes


Roboflow

https://universe.roboflow.com


labelme

pip install labelme
labelme pic123.jpg

Labelme2YOLO

pip install labelme2yolo

  • Convert JSON files, split training and validation dataset by –val_size
    python labelme2yolo.py --json_dir /home/username/labelme_json_dir/ --val_size 0.2

LabelImg

pip install labelImg

labelImg
labelImg [IMAGE_PATH] [PRE-DEFINED CLASS FILE]


VOC .xml convert to YOLO .txt

cd ~/tf/raccoon/annotations python ~/tf/xml2yolo.py


YOLO Annotation formats (.txt)

class_num x, y, w, h

0 0.5222826086956521 0.5518115942028986 0.025 0.010869565217391304
0 0.5271739130434783 0.5057971014492754 0.013043478260869565 0.004347826086956522

Object Detection


Object Detection Landscape

Blog: The Object Detection Landscape: Accuracy vs Runtime


R-CNN, Fast R-CNN, Faster R-CNN

Blog: 目標檢測

  • R-CNN首先使用Selective search提取region proposals(候選框);然後用Deep Net(Conv layers)進行特徵提取;最後對候選框類別分別採用SVM進行類別分類,採用迴歸對bounding box進行調整。其中每一步都是獨立的。
  • Fast R-CNN在R-CNN的基礎上,提出了多任務損失(Multi-task Loss), 將分類和bounding box迴歸作爲一個整體任務進行學習;另外,通過ROI Projection可以將Selective Search提取出的ROI區域(即:候選框Region Proposals)映射到原始圖像對應的Feature Map上,減少了計算量和存儲量,極大的提高了訓練速度和測試速度。
  • Faster R-CNN則是在Fast R-CNN的基礎上,提出了RPN網絡用來生成Region Proposals。通過網絡共享將提取候選框與目標檢測結合成一個整體進行訓練,替換了Fast R-CNN中使用Selective Search進行提取候選框的方法,提高了測試過程的速度。

R-CNN

Paper: arxiv.org/abs/1311.2524


Fast R-CNN

Paper: arxiv.org/abs/1504.08083
Github: faster-rcnn


Faster R-CNN

Paper: arxiv.org/abs/1506.01497
Github: faster_rcnn, py-faster-rcnn


Blog: [物件偵測] S3: Faster R-CNN 簡介

  • RPN是一個要提出proposals的小model,而這個小model需要我們先訂出不同尺度、比例的proposal的邊界匡的雛形。而這些雛形就叫做anchor。

  • RPN的上路是負責判斷anchor之中有無包含物體的機率,因此,1×1的卷積深度就是9種anchor,乘上有無2種情況,得18。而下路則是負責判斷anchor的x, y, w, h與ground truth的偏差量(offsets),因此9種anchor,乘上4個偏差量(dx, dy, dw, dh),得卷積深度為36。


Mask R-CNN

Paper: arxiv.org/abs/1703.06870

<img width="50%" height="50%" src="https://miro.medium.com/max/2000/0*-tQsWmjcPhVfwRZ4"

Blog: [物件偵測] S9: Mask R-CNN 簡介

Code: matterport/Mask_RCNN


SSD: Single Shot MultiBox Detector

Paper: arxiv.org/abs/1512.02325
Blog: Understanding SSD MultiBox — Real-Time Object Detection In Deep Learning
使用神經網絡(VGG-16)提取feature map後進行分類和回歸來檢測目標物體。 Code: pierluigiferrari/ssd_keras


RetinaNet

Paper: Focal Loss for Dense Object Detection
Code: keras-retinanet
Blog: RetinaNet 介紹 從左到右分別用上了

  • 殘差網路(Residual Network ResNet)
  • 特徵金字塔(Feature Pyramid Network FPN)
  • 類別子網路(Class Subnet)
  • 框子網路(Box Subnet)
  • 以及Anchors

CornerNet

Paper: CornerNet: Detecting Objects as Paired Keypoints
Code: princeton-vl/CornerNet


CenterNet

Paper: CenterNet: Keypoint Triplets for Object Detection
Code: xingyizhou/CenterNet


EfficientDet

Paper: arxiv.org/abs/1911.09070
Code: google efficientdet

Kaggle: rkuo2000/efficientdet-gwd


YOLO Evolution

YOLO- You Only Look Once

Code: pjreddie/darknet

YOLOv1 : mapping bounding box

YOLOv2 : anchor box proportional to K-means

YOLOv3 : Darknet-53 + FPN


YOLObile

Paper: arxiv.org/abs/2009.05697
Code: nightsnack/YOLObile


YOLOv4

Paper: YOLOv4: Optimal Speed and Accuracy of Object Detection

  • YOLOv4 = YOLOv3 + CSPDarknet53 + SPP + PAN + BoF + BoS
  • CSP
  • PANet

Code: AlexeyAB/darknet
Code: WongKinYiu/PyTorch_YOLOv4


YOLOv5

Code: ultralytics/yolov5/


Scaled-YOLOv4

Paper: arxiv.org/abs/2011.08036
Code: WongKinYiu/ScaledYOLOv4


YOLOR : You Only Learn One Representation

Paper: arxiv.org/abs/2105.04206
Code: WongKinYiu/yolor


YOLOX

Paper: arxiv.org/abs/2107.08430
Code: Megvii-BaseDetection/YOLOX


CSL-YOLO

Paper: arxiv.org/abs/2107.04829
Code: D0352276/CSL-YOLO


YOLOv6

Blog: YOLOv6:又快又准的目标检测框架开源啦
Code: meituan/YOLOv6


YOLOv7

Paper: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

  • Extended efficient layer aggregation networks
  • Model scaling for concatenation-based models
  • Planned re-parameterized convolution
  • Coarse for auxiliary and fine for lead head label assigner

Code: WongKinYiu/yolov7


YOLOv8

Blog: Dive into YOLOv8
Paper: Real-Time Flying Object Detection with YOLOv8

Code: https://github.com/ultralytics/ultralytics
Kaggle: rkuo2000/YOLOv8, rkuo2000/YOLOv8-Pothole-detection


UAV-YOLOv8

Paper: UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios


YOLOv8 Aerial Sheep Detection and Counting

Code: https://github.com/monemati/YOLOv8-Sheep-Detection-Counting


YOLOv8 Drone Surveillance

Code: https://github.com/ni9/Object-Detection-From-Drone-For-Surveillance


YOLOv9

Paper: YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information
Code: https://github.com/WongKinYiu/yolov9


YOLOv10

Paper: YOLOv10: Real-Time End-to-End Object Detection
Code: https://github.com/THU-MIG/yolov10


YOLOv11

Paper: YOLOv11: An Overview of the Key Architectural Enhancements
Code: https://github.com/ultralytics/ultralytics


YOLOv12

Paper: YOLOv12: Attention-Centric Real-Time Object Detectors
Code: https://github.com/sunsmarterjie/yolov12


YOLOv13

Paper: YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception
Code: https://github.com/iMoonLab/yolov13


RF-DETR

RF-DETR: SOTA Real-Time Detection and Segmentation Model
Paper: DETRs Beat YOLOs on Real-time Object Detection

Paper: RF-DETR Object Detection vs YOLOv12

Code: https://github.com/roboflow/rf-detr

Blog: How to Deploy RF-DETR to an NVIDIA Jetson


RF-DETR v2

Paper: RT-DETRv2: Improved Baseline with Bag-of-Freebies for Real-Time Detection Transformer
Code: https://github.com/lyuwenyu/RT-DETR


Trash Detection

Localize and Classify Wastes on the Streets

Paper: arxiv.org/abs/1710.11374
Model: GoogLeNet


Street Litter Detection

Code: isaychris/litter-detection-tensorflow


TACO: Trash Annotations in Context

Paper: arxiv.org/abs/2003.06875
Code: pedropro/TACO
Model: Mask R-CNN


Marine Litter Detection

Paper: arxiv.org/abs/1804.01079
Dataset: Deep-sea Debris Database


Marine Debris Detection

Ref. Detect Marine Debris from Aerial Imagery
Code: yhoztak/object_detection
Model: RetinaNet


UDD dataset

Paper: A New Dataset, Poisson GAN and AquaNet for Underwater Object Grabbing
Dataset: UDD_Official
Concretely, UDD consists of 3 categories (seacucumber, seaurchin, and scallop) with 2,227 images


Detecting Underwater Objects (DUO)

Paper: A Dataset And Benchmark Of Underwater Object Detection For Robot Picking
Dataset: DUO


Other Applications

Satellite Image Deep Learning

T-CNN : Tubelets with CNN

Paper: arxiv.org/abs/1604.02532
Blog: 人工智慧在太空的應用


Swimming Pool Detection

Dataset: Aerial images of swimming pools
Kaggle: Evaluation Efficientdet - Swimming Pool Detection


Identify Military Vehicles in Satellite Imagery

Blog: Identify Military Vehicles in Satellite Imagery with TensorFlow
Dataset: Moving and Stationary Target Acquisition and Recognition (MSTAR) Dataset
Code: Target Recognition in Sythentic Aperture Radar Imagery Using Deep Learning
script.ipynb

YOLOv5 Detect

detect image / video


YOLOv5 Elephant

train YOLOv5 for detecting elephant (dataset from OpenImage V6)


BCCD Dataset

3 classes: RBC (Red Blood Cell), WBC (White Blood Cell), Platelets (血小板)
Kaggle: https://www.kaggle.com/datasets/surajiiitm/bccd-dataset


Face Mask Dataset

Kaggle: https://kaggle.com/rkuo2000/yolov5-facemask


Traffic Analysis

Kaggle: https://kaggle.com/rkuo2000/yolov5-traffic-analysis


Global Wheat Detection

Kaggle: https://www.kaggle.com/rkuo2000/yolov5-global-wheat-detection ![](https://github.com/rkuo2000/AI-course/blob/main/assets/images/YOLOv5_GWD.jpg?raw=true) **Kaggle:** [https://www.kaggle.com/rkuo2000/efficientdet-gwd](https://www.kaggle.com/rkuo2000/efficientdet-gwd)
![](https://github.com/rkuo2000/AI-course/blob/main/assets/images/EfficientDet_GWD.png?raw=true)


Mask R-CNN

Kaggle: rkuo2000/mask-rcnn


Mask R-CNN transfer learning

Kaggle: Mask RCNN transfer learning


Objectron

Kaggle: rkuo2000/mediapipe-objectron


OpenCV-Python play GTA5

Ref. Reading game frames in Python with OpenCV - Python Plays GTA V
Code: Sentdex/pygta5


Steel Defect Detection

Dataset: Severstal: Steel Defect Detection
Kaggle: https://www.kaggle.com/code/jaysmit/u-net (Keras UNet)


PCB Defect Detection

Dataset: HRIPCB dataset (dropbox)


Pothole Detection

Blog: Pothole Detection using YOLOv4
Code: yolov4_pothole_detection.ipynb
Kaggle: YOLOv7 Pothole Detection


Car Breaking Detection

Code: YOLOv7 Braking Detection


Steel Defect Detection

Dataset: Severstal: Steel Defect Detection


Steel Defect Detection using UNet

Kaggle: https://www.kaggle.com/code/jaysmit/u-net (Keras UNet)
Kaggle: https://www.kaggle.com/code/myominhtet/steel-defection (pytorch UNet


Steel-Defect Detection Using CNN

Code: https://github.com/himasha0421/Steel-Defect-Detection


MSFT-YOLO

Paper: MSFT-YOLO: Improved YOLOv5 Based on Transformer for Detecting Defects of Steel Surface


PCB Datasets


PCB Defect Detection

Paper: PCB Defect Detection Using Denoising Convolutional Autoencoders


PCB Defect Classification

Dataset: HRIPCB dataset (dropbox)
印刷电路板(PCB)瑕疵数据集。它是一个公共合成PCB数据集,包含1386张图像,具有6种缺陷(漏孔、鼠咬、开路、短路、杂散、杂铜),用于图像检测、分类和配准任务。
Paper: End-to-end deep learning framework for printed circuit board manufacturing defect classification


Object Tracking Datasets

Paper: Deep Learning in Video Multi-Object Tracking: A Survey

Multiple Object Tracking (MOT)

MOT-16


Under-water Ojbect Tracking (UOT)

Paper: Underwater Object Tracking Benchmark and Dataset
UOT32
UOT100


Re3 : Real-Time Recurrent Regression Networks for Visual Tracking of Generic Objects

Paper: arxiv.org/abs/1705.06368
Code: moorejee/Re3


Deep SORT

Paper: Simple Online and Realtime Tracking with a Deep Association Metric
Code: https://github.com/nwojke/deep_sort


SiamCAR

Paper: arxiv.org/abs/1911.07241
Code: ohhhyeahhh/SiamCAR


YOLOv5 + DeepSort

Code: HowieMa/DeepSORT_YOLOv5_Pytorch


Yolov5 + StrongSORT with OSNet

Code: https://github.com/mikel-brostrom/Yolov5_StrongSORT_OSNet


BoxMOT

Code: BoxMOT: pluggable SOTA tracking modules for segmentation, object detection and pose estimation models


SiamBAN

Paper: arxiv.org/abs/2003.06761
Code: hqucv/siamban
Blog: [CVPR2020][SiamBAN] Siamese Box Adaptive Network for Visual Tracking


FairMOT

Paper: FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking
Code: ifzhang/FairMOT


3D-ZeF

Paper: arxiv.org/abs/2006.08466
Code: mapeAAU/3D-ZeF


ByteTrack

Paper: ByteTrack: Multi-Object Tracking by Associating Every Detection Box
Code: https://github.com/ifzhang/ByteTrack


OC-SORT

Paper: Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking
Code: https://github.com/noahcao/OC_SORT


Deep OC-SORT

Paper: Deep OC-SORT: Multi-Pedestrian Tracking by Adaptive Re-Identification
Code: https://github.com/GerardMaggiolino/Deep-OC-SORT


Track Anything

Paper: Track Anything: Segment Anything Meets Videos
Cpde: https://github.com/gaomingqi/Track-Anything


YOLOv8 + DeepSORT

Code: https://github.com/MuhammadMoinFaisal/YOLOv8-DeepSORT-Object-Tracking


MeMOTR

Paper: MeMOTR: Long-Term Memory-Augmented Transformer for Multi-Object Tracking
Code: https://github.com/MCG-NJU/MeMOTR


Hybrid-SORT

Paper: Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking
Code: https://github.com/ymzis69/HybridSORT


MOTIP

Paper: Multiple Object Tracking as ID Prediction
Code: https://github.com/MCG-NJU/MOTIP


LITE

Paper: LITE: A Paradigm Shift in Multi-Object Tracking with Efficient ReID Feature Integration
Code: https://github.com/Jumabek/LITE
The Lightweight Integrated Tracking-Feature Extraction (LITE) paradigm is introduced as a novel multi-object tracking (MOT) approach.



This site was last updated October 26, 2025.