Pose Estimation

Pose Estimation includes Applications, Human Pose Estimation, Head Pose Estimation & VTuber, Hand Pose Estimation , Object Pose Estimation.


Pose Estimation Applications

健身鏡


運動裁判 (Sport Referee)


馬術治療


跌倒偵測

產線SOP

  • 距離:人臉辨識技術,可辨識距離大約僅兩公尺以內,而人體骨幹技術不受距離限制,15 公尺外遠距離的人體也能精準偵測,進而分析人體外觀、四肢與臉部的特徵,以達到偵測需求。
  • 角度:在正臉的情況下,臉部辨識的精準度非常高,目前僅有極少數相貌非常相似的同卵雙胞胎能夠騙過臉部辨識技術;但在非正臉的時候,臉部辨識的精準度就會急遽下降。在很多實際使用的場景,並不能要求每個參與者都靠近鏡頭、花幾秒鐘以正臉掃描辨識,在這種情況下,人體骨幹分析就能充分派上用場,它的精準度甚至比「非正臉的人臉辨識」高出 30% 以上。

Pose-controlled Lights


Human Pose Estimation

Benchmark: https://paperswithcode.com/task/pose-estimation

Model NamePaperCode
PCT https://arxiv.org/abs/2303.11638 https://github.com/gengzigang/pct
ViTPose https://arxiv.org/abs/2204.12484v3 https://github.com/vitae-transformer/vitpose

PoseNet

Paper: arxiv.org/abs/1505.07427
Code: rwightman/posenet-pytorch
Kaggle: PoseNet Pytorch


OpenPose

Paper: arxiv.org/abs/1812.08008
Code: CMU-Perceptual-Computing-Lab/openpose
Kaggle: OpenPose Pytorch


DensePose

Paper: arxiv.org/abs/1802.00434
Code: facebookresearch/DensePose


Multi-Person Part Segmentation

Paper: arxiv.org/abs/1907.05193
Code: kevinlin311tw/CDCL-human-part-segmentation


YOLO-Pose

Paper: YOLO-Pose: Enhancing YOLO for Multi Person Pose Estimation Using Object Keypoint Similarity Loss


ViTPose

Paper: ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation
Paper: ViTPose+: Vision Transformer Foundation Model for Generic Body Pose Estimation
Paper: ViTPose++: Vision Transformer for Generic Body Pose Estimation
Code: https://github.com/ViTAE-Transformer/ViTPose


ED-Pose

Paper: Explicit Box Detection Unifies End-to-End Multi-Person Pose Estimation
Code: https://github.com/IDEA-Research/ED-Pose


OSX-UBody

Paper: One-Stage 3D Whole-Body Mesh Recovery with Component Aware Transformer
Code: https://github.com/IDEA-Research/OSX


Human Pose as Compositional Tokens

Paper: https://arxiv.org/abs/2303.11638
Code: https://github.com/gengzigang/pct


DWPose

Paper: Effective Whole-body Pose Estimation with Two-stages Distillation
Code: https://github.com/IDEA-Research/DWPose


Group Pose

Paper: Group Pose: A Simple Baseline for End-to-End Multi-person Pose Estimation
Code: https://github.com/Michel-liu/GroupPose


YOLOv8 Pose

Kaggle: https://www.kaggle.com/rkuo2000/yolov8-pose


MMPose

Algorithms
Code: https://github.com/open-mmlab/mmpose

  • support two new datasets: UBody, 300W-LP
  • support for four new algorithms: MotionBERT, DWPose, EDPose, Uniformer

3D Human Pose Estimation

Benchmark: https://paperswithcode.com/task/3d-human-pose-estimation

MotionBERT

Paper: MotionBERT: A Unified Perspective on Learning Human Motion Representations
Code: https://github.com/Walter0807/MotionBERT


BCP+VHA R152 384x384

Paper: Representation learning of vertex heatmaps for 3D human mesh reconstruction from multi-view images


Face Datasets

300-W: 300 Faces In-the-Wild


300W-LPA: 300W-LPA Database


LFPW: Labeled Face Parts in the Wild (LFPW) Dataset


HELEN: Helen dataset


AFW: Annotated Faces in the Wild

AFW (Annotated Faces in the Wild) is a face detection dataset that contains 205 images with 468 faces. Each face image is labeled with at most 6 landmarks with visibility labels, as well as a bounding box.


IBUG: https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/


Head Pose Estimation

Code: yinguobing/head-pose-estimation
Kaggle: https://www.kaggle.com/rkuo2000/head-pose-estimation

HopeNet

Paper: Fine-Grained Head Pose Estimation Without Keypoints

Code: Hopenet
Code: https://github.com/natanielruiz/deep-head-pose

Blog: HOPE-Net : A Machine Learning Model for Estimating Face Orientation


VTuber

Vtuber總數突破16000人,增速不緩一年增加3000人 依據日本數據調查分析公司 User Local 的報告,在該社最新的 User Local VTuber 排行榜上,有紀錄的 Vtuber 正式突破了 16,000 人。

1位 Gawr Gura(がうるぐら サメちゃん) Gawr Gura Ch. hololive-EN

2位 キズナアイ Kizuna AI

VTuber-Unity = Head-Pose-Estimation + Face-Alignment + GazeTracking


VRoid Studio


VTuber_Unity


OpenVtuber


Hand Pose Estimation

Hand3D

Paper: arxiv.org/abs/1705.01389
Code: lmb-freiburg/hand3d


InterHand2.6M

Paper: https://arxiv.org/abs/2008.09309
Code: https://github.com/facebookresearch/InterHand2.6M
Dataset: Re:InterHand Dataset


InterWild

Paper: Bringing Inputs to Shared Domains for 3D Interacting Hands Recovery in the Wild
Code: https://github.com/facebookresearch/InterWild/tree/main#test

RenderIH

Paper: RenderIH: A Large-scale Synthetic Dataset for 3D Interacting Hand Pose Estimation
Code: https://github.com/adwardlee/RenderIH
Watch the video

TransHand - transformer-based pose estimation network


Exercises of Pose Estimation

PoseNet

Kaggle: https://www.kaggle.com/rkuo2000/posenet-pytorch
Kaggle: https://www.kaggle.com/rkuo2000/posenet-human-pose


OpenPose

Kaggle: https://github.com/rkuo2000/openpose-pytorch


MMPose

Kaggle:https://www.kaggle.com/rkuo2000/mmpose

2D Human Pose

2D Human Whole-Body

2D Hand Pose

2D Face Keypoints

3D Human Pose

2D Pose Tracking

2D Animal Pose

3D Hand Pose

WebCam Effect


Basketball Referee

Code: AI Basketball Referee
該AI主要追蹤兩個東西:球的運動軌跡和人的步數, using YOLOv8 Pose


Head Pose Estimation

Kaggle: https://kaggle.com/rkuo2000/head-pose-estimation


VTuber-Unity

Head-Pose-Estimation + Face-Alignment + GazeTracking

Build-up Steps:

  1. Create a character: VRoid Studio
  2. Synchronize the face: VTuber_Unity
  3. Take video: OBS Studio
  4. Post-processing:
  5. Upload: YouTube
  6. [Optional] Install CUDA & CuDNN to enable GPU acceleration
  7. To Run
    $git clone https://github.com/kwea123/VTuber_Unity
    $python demo.py --debug --cpu


OpenVtuber

Build-up Steps:

  • Repro Github
    $git clone https://github.com/1996scarlet/OpenVtuber
    $cd OpenVtuber
    $pip3 install –r requirements.txt
  • Install node.js for Windows
  • run Socket-IO Server
    $cd NodeServer
    $npm install express socket.io
    $node. index.js
  • Open a browser at http://127.0.0.1:6789/kizuna
  • PythonClient with Webcam
    $cd ../PythonClient
    $python3 vtuber_link_start.py



This site was last updated November 15, 2024.