Image Segmentation

Image Segmentation includes Image Matting, Semantics Segmentation, Human Part Segmentation, Instance Segmentation, Video Object Segmentation, Panopitc Segmentation.


Paper: Evolution of Image Segmentation using Deep Convolutional Neural Network: A Survey


Paper: Image Segmentation Using Deep Learning: A Survey


Image Matting

Image Matting is the process of accurately estimating the foreground object in images and videos.


Deep Image Matting

Paper: arxiv.org/abs/1703.03872


MODNet: Trimap-Free Portrait Matting in Real Time

Paper: arxiv.org/abs/2011.11961
Code: ZHKKKe/MODNet

Kaggle: rkuo2000/modnet-image-matting


PaddleSeg: A High-Efficient Development Toolkit for Image Segmentation

Paper: MODNet: Real-Time Trimap-Free Portrait Matting via Objective Decomposition
Code: PaddlePaddle/PaddleSeg

BiseNetV2 model

Four segmentation areas: semantic segmentation, interactive segmentation, panoptic segmentation and image matting. Various applications in autonomous driving, medical segmentation, remote sensing, quality inspection, and other scenarios.


Semantic Image Matting

Paper: arxiv.org/abs/2104.08201
Code: nowsyn/SIM

Semantic Segmentation (意義分割)

FCN - Fully Convolutional Networks

Paper: Fully Convolutional Networks for Semantic Segmentation
Code: https://github.com/hayoung-kim/tf-semantic-segmentation-FCN-VGG16
Blog: FCN for Semantic Segmentation簡介

FCN Architecture FCN-8 Architecture Conv & DeConv

上圖為作者在論文中給出的融合組合。第一列的FCN-32是指將conv7層直接放大32倍的網路;而FCN-16則是將conv7層放大兩倍之後,和pool4做結合再放大16倍的網路,以此類推。


這些網路對應到的成果圖如下圖。可以發現,考慮越多不同尺度的feature map所得到的最終prediction map之精細度也越高,越接近ground-truth。


SegNet - A Deep Convolutional Encoder-Decoder Architecture

Paper: arxiv.org/abs/1511.00561
Code: github.com/yassouali/pytorch_segmentation


PSPNet - Pyramid Scene Parsing Network

Paper: arxiv.org/abs/1612.01105
Code: github.com/hszhao/semseg (PSPNet, PSANet in PyTorch)

Kaggle: https://www.kaggle.com/code/rkuo2000/image-segmentation-keras


DeepLab V3+

Paper: arxiv.org/abs/1802.02611
Code: github.com/bonlime/keras-deeplab-v3-plus

Kaggle: rkuo2000/deeplabv3-plus


Semantic Segmentation on MIT ADE20K

Code: github.com/CSAILVision/semantic-segmentation-pytorch
Dataset: MIT ADE20K, Models: PSPNet, UPerNet, HRNet

Kaggle: https://www.kaggle.com/code/rkuo2000/semantic-segmentation


Semantic Segmentation on PyTorch

Code: Tramac/awesome-semantic-segmentation-pytorch
Datasets: Pascal VOC, CityScapes, ADE20K, MSCOCO
Models:


USNet

Paper: Fast Road Segmentation via Uncertainty-aware Symmetric Network
Code: https://github.com/morancyc/USNet


Segment Anything (by Meta)

Paper: https://arxiv.org/abs/2304.02643
The Segment Anything Model (SAM) produces high quality object masks from input prompts such as points or boxes, and it can be used to generate masks for all objects in an image. It has been trained on a dataset of 11 million images and 1.1 billion masks, and has strong zero-shot performance on a variety of segmentation tasks.
Code: https://github.com/facebookresearch/segment-anything

Kaggle: https://www.kaggle.com/code/rkuo2000/segment-anything


Segment Everything Everywhere All at Once (by Microsoft)

Paper: https://arxiv.org/abs/2304.06718
Code: UX-Decoder/Segment-Everything-Everywhere-All-At-Once

Kaggle: https://www.kaggle.com/code/rkuo2000/fastsam


Fast Segment Anything

Paper: https://arxiv.org/abs/2306.12156
Code: CASIA-IVA-Lab/FastSAM
Kaggle: https://www.kaggle.com/code/rkuo2000/fastsam


SAM 2: Segment Anything in Images and Videos

Blog: Introducing SAM 2: The next generation of Meta Segment Anything Model for videos and images
Paper: SAM 2: Segment Anything in Images and Videos
Code: https://github.com/facebookresearch/segment-anything-2
Kaggle: https://www.kaggle.com/code/rkuo2000/segment-anything-2


U-Net

U-Net

Paper: arxiv.org/abs/1505.04597
Code: U-Net Keras


3D U-Net

Paper: arxiv.org/abs/1606.06650

Brain Tumor Segmentation

Dataset: Brain Tumor Segmentation(BraTS2020)
Code: https://www.kaggle.com/polomarco/brats20-3dunet-3dautoencoder


3D MRI BraTS using AutoEncoder

Paper: 3D MRI brain tumor segmentation using autoencoder regularization


BraTS with 3D U-Net

Paper:Brain tumor segmentation with self-ensembled, deeply-supervised 3D U-net neural networks: a BraTS 2020 challenge solution


HarDNet-MSEG: 高效且準確之類神經網路應用於大腸息肉分割

Paper: HarDNet-MSEG: A Simple Encoder-Decoder Polyp Segmentation Neural Network that Achieves over 0.9 Mean Dice and 86 FPS
Code: james128333/HarDNet-MSEG


PraNet

Paper: PraNet: Parallel Reverse Attention Network for Polyp Segmentation
Code: DengPingFan/PraNet


TGANet

Paper: TGANet: Text-guided attention for improved polyp segmentation
Code: nikhilroxtomar/TGANet


Medical SAM Adapter: Adapting Segment Anything Model for Medical Image Segmentation

Paper: https://arxiv.org/abs/2304.12620
Code: WuJunde/Medical-SAM-Adapter


SwinMM

SwinMM: Masked Multi-view with Swin Transformers for 3D Medical Image Segmentation
Paper: https://arxiv.org/abs/2307.12591
Code:UCSC-VLAA/SwinMM


Few Shot Medical Image Segmentation with Cross Attention Transformer

Paper: https://arxiv.org/abs/2303.13867


Human Part Segmentation

https://paperswithcode.com/task/human-part-segmentation

Look Into Person Challenge 2020 [LIP]

  • LIP is the largest single person human parsing dataset with 50000+ images. This dataset focus more on the complicated real scenarios. LIP has 20 labels, including ‘Background’, ‘Hat’, ‘Hair’, ‘Glove’, ‘Sunglasses’, ‘Upper-clothes’, ‘Dress’, ‘Coat’, ‘Socks’, ‘Pants’, ‘Jumpsuits’, ‘Scarf’, ‘Skirt’, ‘Face’, ‘Left-arm’, ‘Right-arm’, ‘Left-leg’, ‘Right-leg’, ‘Left-shoe’, ‘Right-shoe’.

HumanParsing-Dataset [ATR] (passwd:kjgk)

Paper: Human Parsing with Contextualized Convolutional Neural Network

  • ATR is a large single person human parsing dataset with 17000+ images. This dataset focus more on fashion AI. ATR has 18 labels, including ‘Background’, ‘Hat’, ‘Hair’, ‘Sunglasses’, ‘Upper-clothes’, ‘Skirt’, ‘Pants’, ‘Dress’, ‘Belt’, ‘Left-shoe’, ‘Right-shoe’, ‘Face’, ‘Left-leg’, ‘Right-leg’, ‘Left-arm’, ‘Right-arm’, ‘Bag’, ‘Scarf’.

PASCAL-Part Dataset [PASCAL]

  • Pascal Person Part is a tiny single person human parsing dataset with 3000+ images. This dataset focus more on body parts segmentation. Pascal Person Part has 7 labels, including ‘Background’, ‘Head’, ‘Torso’, ‘Upper Arms’, ‘Lower Arms’, ‘Upper Legs’, ‘Lower Legs’.

Self Correction Human Parsing

Blog: HumanPartSegmentation : A Machine Learning Model for Segmenting Human Parts
Paper: arxiv.org/abs/1910.09777
Code: PeikeLi/Self-Correction-Human-Parsing

Kagge: https://www.kaggle.com/code/rkuo2000/human-part-segmentation/


Cross-Domain Complementary Learning Using Pose for Multi-Person Part Segmentation

Paper: arxiv.org/abs/1907.05193
Code: kevinlin311tw/CDCL-human-part-segmentation


Instance Segmentation (實例分割)

A Survey on Instance Segmentation

Paper: arxiv.org/abs/2007.00047


Mask-RCNN

Paper: arxiv.org/abs/1703.06870
Blog: 理解Mask R-CNN的工作原理

Mask R-CNN 是個兩階段的架構,第一階段掃描圖像並生成proposals(即有可能包含一個目標的區域),第二階段分類提議並生成邊界框和Mask


TensorMask - A Foundation for Dense Object Segmentation

Paper: arxiv.org/abs/1903.12174
Code: TensorMask in Detectron2


PointRend

Paper: PointRend: Image Segmentation as Rendering
Blog: Facebook PointRend: Rendering Image Segmentation Code: Detectron2 PointRend


YOLACT - Real-Time Instance Segmentation

Paper: arxiv.org/abs/1904.02689
   YOLACT++: Better Real-time Instance Segmentation
Code: https://github.com/dbolya/yolact
   https://www.kaggle.com/rkuo2000/yolact

Kaggle: https://www.kaggle.com/code/rkuo2000/yolact


INSTA YOLO

Paper: arxiv.org/abs/2102.06777


YOLOv8 Segment

Blog: Train YOLOv8 Instance Segmentation on Your Data

Blog: How to Train YOLOv8 Instance Segmentation on a Custom Dataset

Kaggle: https://www.kaggle.com/code/rkuo2000/yolov8-segment


3D Classification & Segmentation

ModelNet - 3D CAD models for objects

PointNet

Paper: PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
Code: charlesq34/pointnet


PointNet++

Paper: PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
Code: charlesq34/pointnet2


PCPNet

Paper: PCPNET: Learning Local Shape Properties from Raw Point Clouds

Code: paulguerrero/pcpnet
python eval_pcpnet.py –indir “path/to/dataset” –dataset “dataset.txt” –models “/path/to/model/model_name”


PointCleanNet

Paper: PointCleanNet: Learning to Denoise and Remove Outliers from Dense Point Clouds
Code: mrakotosaon/pointcleannet


Meta-SeL

Paper: Meta-SeL: 3D-model ShapeNet Core Classification using Meta-Semantic Learning
Code: faridghm/Meta-SeL
Dataset: ShapeNetCore

  • It covers 55 common object categories with about 51,300 unique 3D models.
  • The 12 object categories of PASCAL 3D+

Video Object Datasets (影像物件資料集)

DAVIS - Densely Annotated VIdeo Segmentation

DAVIS dataset

DAVIS 2017
!wget https://data.vision.ee.ethz.ch/csergi/share/davis/DAVIS-2017-trainval-480p.zip
!unzip -q DAVIS-2017-trainval-480p.zip


YTVOS - YouTube Video Object Segmentation

Video Object Segmentation

  • 4000+ high-resolution YouTube videos
  • 90+ semantic categories
  • 7800+ unique objects
  • 190k+ high-quality manual annotations
  • 340+ minutes duration

YTVOS 2019
YTVOS 2018

  • train.zip
  • train_all_frames.zip
  • valid.zip
  • valid_all_frames.zip
  • test.zip
  • test_all_frames.zip

YTVIS - YouTube Video Instance Segmentation

Video Instance Segmentation

2021 version
 3,859 high-resolution YouTube videos, 2,985 training videos, 421 validation videos and 453 test videos.
 An improved 40-category label set
 8,171 unique video instances
 232k high-quality manual annotations

UVO - Unidentified Video Objects

Paper: Unidentified Video Objects: A Benchmark for Dense, Open-World Segmentation
Website: Unidentified Video Objects


Anomaly Video Datasets

Paper: A survey of video datasets for anomaly detection in automated surveillance



Video Object Segmentation (影像物件分割)


FlowNet 2.0

Paper: arxiv.org/abs/1612.01925
Code: NVIDIA/flownet2-pytorch

Optical Flow Based Object Movement Tracking

Paper: Optical Flow Based Object Movement Tracking


Learning What to Learn for VOS

Paper: arxiv.org/abs/2003.11540
Blog: Learning What to Learn for Video Object Seg


FRTM-VOS

Paper: arxiv.org/abs/2003.00908
Code: andr345/frtm-vos


State-Aware Tracker for Real-Time VOS

Paper: arxiv.org/abs/2003.00482
Code: MegviiDetection/video_analyst


Optical Flow

Motion Estimation with Optical Flow

Blog: Introduction to Motion Estimation with Optical Flow


Moving Object Tracking Based on Sparse Optical Flow

Paper: Moving Object Tracking Based on Sparse Optical Flow with Moving Window and Target Estimator
Code: Tracking Motion without Neural Networks: Optical Flow


LiteFlowNet3

Paper: arxiv.org/abs/2007.09319
Code: twhui/LiteFlowNet3

Cost Volume Modulation (CM)

Flow Field Deformation (FD)


Semantic Segmentation Datasets for Autonomous Driving

自動駕駛用意義分割資料集

CamVid Dataset


KITTI Dataset


CityScapes

Cityscapes Image Pairs
Semantic Segmentation for Improving Automated Driving


Mapillary Vitas Dataset

  • 25,000 high-resolution images
  • 124 semantic object categories
  • 100 instance-specifically annotated categories
  • Global reach, covering 6 continents
  • Variety of weather, season, time of day, camera, and viewpoint


nuScenes

nuScenes devkit


Optical Flow Based Motion Detection for Autonomous Driving

Paper: Optical Flow Based Motion Detection for Autonomous Driving
Dataset: nuScenes
nuScenes devkit Code: kamanphoebe/MotionDetection

  • Optical flow algorithms: FastFlowNet, Raft
  • Model: ResNet18**

Panoptic Segmentation (全景分割)

Blog: 全景分割(Panoptic Segmentation)


nuScenes panoptic challenge


YOLOP

Paper: arxiv.org/abs/2108.11250
Code: hustvl/YOLOP

Kaggle: https://www.kaggle.com/code/rkuo2000/yolop


VPSNet for Video Panoptic Segmentation

Paper: arxiv.org/abs/2006.11339
Code: mcahny/vps


Panoptic-PolarNet: Proposal-free LiDAR Point Cloud Panoptic Segmentation

Paper: https://arxiv.org/abs/2103.14962 Code: edwardzhou130/Panoptic-PolarNet


Panoptic-PHNet: Towards Real-Time and High-Precision LiDAR Panoptic Segmentation via Clustering Pseudo Heatmap

Paper: https://arxiv.org/abs/2205.07002


LidarMultiNet

Paper: LidarMultiNet: Towards a Unified Multi-Task Network for LiDAR Perception



This site was last updated November 15, 2024.